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Abstract

Over the past decade, various methods have been proposed to train artificial
intelligence (AI) algorithms for treating sepsis patients with vasopressors and
IV fluids. However, development of an AI algorithm that learns to optimallly
administer vasopressors and fluids still remains elusive. In this study, we propose
to employ a reinforcement learning (RL) based approach that utilizes recurrent
neural networks (RNN) to recommend the right amount of vasopressors and fluids
to administer to septic patients in order to improve their survival rates. Our
RL agent is trained using the MIMIC III dataset which consists of 5,366 septic
patients. Using our proposed RL agent, we observed that the net improvement
in mortality was 0.190 for the median and 0.242 for the interquartile range. We
also report the performance of the RL dosing agent under varying design choices
of the neural networks - including various types of recurrent neural networks,
various number of RNN layers and various number of training epochs.

1 Introduction

Optimal medication dosing has been an active area of research over the past decade [Organization
et al., 2016, Lin et al., 2018, Nemati et al., 2016]. Indeed, it is challenging for clinicians to prescribe
the optimal medication dosing to patients in critical situation due to various factors including
availability of pertinent patient information, the complexity of human physiology among others.
Additionally, sepsis is a critical disease which requires treatment within an optimal timeframe.

Sepsis has become one of the most dangerous and fatal disease having caused death of tremendous
people through the world, 49 millions individuals was estimated affected in 2017 and approximately
11 million deaths worldwide [Organization et al., 2020]. Usually injected through vein or under
the skin, different treatments have been proposed with different effects, the quantity and the type of
fluid to administrate with minimum effect remain one of the main problem. Indeed, it is challenging
to recommend the optimal dose since the misdosing (overdosing or under dosing) may worsen the
situation, sometimes leading to death. Throughout the years different technique have been used to
address the issue [Raghu, 2019].

In this study we addressed the challenge through the use of an automatic controller or techniques
rooted from machine learning. A reinforcement learning based close loop controller aims to help
clinicians to provide and personalize an optimal drug dosing necessary to be administered to each
patient, the method has shown its effectiveness in healthcare applications [Malof and Gaweda, 2011,
Gaweda et al., 2004, 2005]. Our work is organized as follows, first we describe sepsis and the various
treatments used for treating sepsis. Second, we describe the reinforcement learning technique and
algorithm used for optimization. Finally we evaluate the performance of the algorithm using an
open-source dataset.



2 Sepsis: Description and Dataset

Defined as a life threatening organ dysfunction caused by a dysregulated host response to infection,
sepsis is amongst the leading cause of deaths [Singer et al., 2016]. A new report from the World
Health Organization (WHO) stated the disease affects an estimated 49 million people and causes
around 11 million deaths globally every year [Organization et al., 2020].

2.1 Descriptions and Treatments of Sepsis

The human immune system and cells play essential role for the protection and defense from different
invasion of pathogens and foreign substances (bacteria, virus or other microbes). A variety of pro-
inflammatory substances and pro-inflammatory cytokines are released and activated throughout the
pathogens associated, generating a cytokine storm [Teijaro, 2017, Chousterman et al., 2017]. In
previous studies, inflammatory responses have been observed with diseases related to respiratory
viral infection, this is important for the defense against pathogens.

However, it may also deteriorate the normal tissues and cells as well. Indeed, exaggerated
inflammatory reactions lead to risky and unnecessary situation, in such case immune suppression
from immune system is necessary to allay the system to decrease the ability of antigen [Patil et al.,
2017, Mira et al., 2017]. The immune suppression is important for enhancing inflammation and
pathogen loading of the body. The inflammatory response and immune suppression both have
different actions and contribute to the protection, while eliminating pathogens, the body renovates
to a normal state.

In the case of the inflammatory response, immune suppression is exorbitant and out of control,
there is no protection, destruction starts, sepsis then develops. Sepsis patients die early from over
inflammation reactions. Patients with sepsis are mostly exposed to a variety of infections attacks
that has caused a rising in many deaths [Lin, 2020].

Contrary to young people who present more resistance to inflammatory attacks, the elderly are more
exposed to sepsis because of weakening immune system, historical chronic diseases [Martin et al.,
2006, Hinojosa et al., 2009]. This can explain why the group that consists of the elderly people are
more exposed to death in the case of COVID-19. In his work [Lin, 2020] proposed that the outbreak
of COVID-19, which has killed one million of people to the whole world, could be viewed as a viral
infection. Indeed, multiple organ dysfunction caused by inflammatory response and more have been
observed in severe cases to COVID-19 patient admitted to ICU [Liu et al., 2020].

2.1.1 Treatments

In the United States, the mortality rate has decreased from 80% to 20% -30% in the early years
due to improved surveillance, early treatment, and advances in support for failing organs [Semler
and Rice, 2016]. Sepsis management guideline requires enormous attention and caution not only
from clinical also from patients, quick and efficient recognition, on-time control of the source of
infection, administration of appropriate dose of antibiotics, and hospital admission. The unusual
low blood pressure is one of the first direction for diagnosing septic shock, early intervention is
necessary by maintaining the blood pressure at 65 mmHg or above, and the amount of lactate upper
to 2mmol/l.

However, there are no dosing rules or protocol for keeping up the mean arterial pressure (MAP)
above 65 mmHg. The use of vasopressors and intravenous (IV) fluid, which is considered the
first treatment [Marik et al., 2020], can vary according to different parameters, which makes it
difficult to determine the ideal combination of vasopressors and IV fluids to administer. Vasopressors
induce vasoconstriction and thus help to elevate the MAP, correct the vascular tone depression,
improve organ perfusion pressure [Shi et al., 2020]. Despite the surviving sepsis campaign (SSC)
recommendation of using norepinephrine or dopamine as first-choice of vasopressors followed by
epinephrine [Shi et al., 2020], the type and dose of vasopressor remain a problem [Russell, 2019].

Likewise, fluid administration are essential in hemodynamic stabilization and resuscitation. IV fluids
are recommended as major therapeutic to sepsis patient for maintaining and replacing the total body
water, electrolytes, as carriers for medications [Avila et al., 2016]. Similarly, the type, dose and
timing of administration remain a challenge.
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During treatment, patients who respond well to early resuscitation therapy and do not present end-
organ hypoperfusion, need a general hospital unit admission. However an admission to ICU is
compulsory for patient in septic shock and does not respond to initial treatment. Fundamentally,
the type, dose, and strategy for fluid resuscitation and vasopressor remain a great challenge, it is an
ongoing debate.

2.2 Data Description

The dataset used in this work is from the MIMIC-III database. MIMIC stands for Medical
Information Mart for Intensive Care. MIMIC-III is part of the large PhysioNet dataset, an openly
available source collection of physiologic and clinical data from different institutes, developed and
maintained by the Massachusetts Institute of Technology (MIT) Lab for computational physiology
[Johnson et al., 2016]. The dataset encompasses health information for over 53 thousand patient’s
hospital admissions for adults aged between 16 years and above, admitted to medical, surgical,
pediatric, and neonatal in Intensive Care Unit at Beth Israel Deaconness Medical Center, in Boston
Massachusetts. [Johnson et al., 2016]. The MIMIC dataset was developed to support research in
epidemiology, clinical decision making, and electronic tool development, enormous updates and
improvement have been done through the years. It is freely accessible, open to researcher academy
and industry internationally under the data use agreement [Szczepaniak et al., 2006].

Identification of each patient in the dataset, details about each hospital stay, patients movement from
ICU also in the hospital are tracked and recorded. Information collected while the patient was in
critical care units is stored across eight tales, caregivers, and all observations are stored in the dataset.
The dataset contains also the laboratory measurement for patients both within the hospital and those
seen outside the hospital and clinic, all fluids administrated to the patient or removed through a
drain, and medications ordered or prescribed.

However, the full dataset is available and requires specific certifications and licensing agreements, a
subset of 100-patients was released by the MIT team to the public domain, which reflects the patient
population characteristics, of the full MIMIC-III dataset.

3 Reinforcement Learning: Concepts and Method

3.1 Reinforcement Learning

Reinforcement learning (RL) is a computational approach whereby an agent tries to learn by
trial-and-error-based knowledge acquisition used by humans and animals [Sutton et al., 1998].
The approach is based on the idea from psychology that serves for control theory and stochastic
optimization [Gaweda et al., 2005]. The agent gains experience by interacting with the
environment(complex and uncertain), by executing actions and observing the outcome(reward or
punished). The aim of the agent is to learn a policy(actions) that maximizes a reward [Wang et al.,
2018].

RL has shown it effectiveness for learning optimal policies for simulated environment using
distributed training with extensive compute capacity [Andersen et al., 2020]. Its combination
with deep neural network, has given powerful algorithms which has driven impressive advances
in artificial intelligence in recent years, exceeding human performance in games [Botvinick et al.,
2019], chemical production [Hubbs et al., 2020] and healthcare [Yu et al., 2019a].

RL algorithms can be broadly divided into online and offline approaches [Schwab and Ray, 2017].
Online approaches assume that the agent interacts directly with the domain and learns a policy, while
offline approaches assumes the agent learns a policy from a fixed dataset of trajectories without
interacting with the environment [Agarwal et al., 2020]. In this study our agent was trained on
retrospectively collected data that included actions administered by clinicians.

3.2 Literature Review: Reinforcement learning in Healthcare

Tremendous advancement have been achieved in the last few years in healthcare using RL due
to fast and efficient algorithms developed in the field. Either online or offline, the technique has
shown its effectiveness in different problems from decision making to medical dosing problem. RL
has been applied in problems related to chronic diseases(Cancer, Diabetes, Anemia) also to critical
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care(Anesthesia, sepsis) and medical diagnosis [Yu et al., 2019a, Fox et al., 2020, Raghu et al.,
2017]. Recently different techniques and algorithms have been applied to tackle the sepsis problem.
These algorithms have been used for early prediction [Shashikumar et al., 2021, Wardi et al., 2020,
Reyna et al., 2019], progression [Wardi et al., 2021a,b] and treatment of sepsis [Yu et al., 2019b,
Peng et al., 2018, Raghu, 2019].

4 Model Dosing for Sepsis Treatment

4.1 Reinforcement Learning Framework Formulation

Conventionally, reinforcement learning consist of an agent placed in a Markov Decision Process
environment composed of a set of states, S, a set of actions, A, transition probabilities P and the
reward function r(s, a) that depends on a given state-action pair. In the case of septic patient with
vasopressors and fluids dosing, we defined:

• Our state such that S(k)
t =

[
x
(k)
t , c(k)

]
, where t represents the time, k is the patient

considered and Skt is the state of patient k at time t and x(k)t is the observations from vital
sign and clinical variable, c(k) is the covariates. This includes all clinical measurements
done on the patient such as heart rate, blood pressure and more.

• We defined two actions that the agent can take (the pair of dose), the intravenous fluid
afluid and vasopressor apressor. This is the combination of two intervention categories, IV
fluid and vasopressor treatment. At each state Si the agent takes an actions a such that
a = (afluid, apressor).

• Policy is defined as the recommended action to take for a given state, the recommend
amount of vasopressors or IV fluid to administrate to a patientat any given state.

• The reward function of our agent is defined by

rt(x
(k)
t ) = β.x(k)

t = β1x
(k)
t,1 + β2x

(k)
t,2 . . . βdfx

(k)
t,df

(1)

Where xt represents the observational data at time t and β is a vector of weights for the
corresponding observations, it is an treated as an hyper parameter that can be tuned using
optimization techniques.

In our study we used the Generalized Propensity Score to check the effectiveness of the treatment
dose (vasopressor and fluid) administrated by our agent to patient, we used the propensity score.
The Generalized Propensity Score method has been used in many studies last years to address the
problems faced using observational data and multiple treatment have been used.

4.2 Model Description

In our study, we used an algorithm constituted of different type of networks. Each network used
plays crucial role, we initialized the algorithm with random parameters to feed into our networks.
Value network which is the first network parameterized, predicts the expected value of a given
state of the patient. Advantage network gives the advantage of choosing a particular action by the
agent same as the policy network which recommends action to choose [Wang et al., 2018]. The GPS
network measures the difference for fluid between the recommendation of the agent and the clinician
actions. The Average Dose Response Function (ADRF) networks predicts patient’s likelihood of
survival given their state and treatment level, the ADRF is calibrated. The counterfactual network
iterates through the different treatment levels and estimates the survival improvement of each
treatment level to assess the potential benefit of the new treatment method figure 1.
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Figure 1: Block Diagram of the overall model

Algorithm 1 Train Agent for Dosing treatment
1: procedure TRAIN_REWARD_AND_AGENT
2: Randomly initialize parameter β(0)

3: for k = 1 : K do
4: R

(k)
t = β

(0)
1 x

(k)
1,t + β

(0)
2 x

(k)
2,t + · · ·+ β

(0)
df
x
(k)
df ,t

5: for n = 0 : Nb − 1 do
6: Train Value Network.
7: Train Advantage Network.
8: Train Policy Network
9: Calculate distance between Agent and Clinician

10: Train GPS network.
11: Evaluate GPS network.
12: Train ADRF network.
13: Calibrating ADRF network.
14: Evaluating treatment.
15: Propose the next sampling point β(n+1).
16: for k = 1 : K do
17: R

(k)
t = β

(n+1)
1 x

(k)
1,t + β

(n+1)
2 x

(k)
2,t + β

(n+1)
df

x
(k)
df ,t

18:
19: β ← argmin [cost(πa;β)]

β∈{β0,...βNb}

5 Experiments and Results

To check the performance of the algorithm, we trained and tested our agent on a subset of the MIMIC
dataset, containing various treatment recommendations from expert clinicians for sepsis and septic
shock. The task of our agent was to recommend the right amount of fluid and vasopressor to patient
at the right time, for early management of septic shock. Vasopressors are used to restore a patient’s
blood pressure when it is abnormal or below the average of 65 mm Hg. The best performance, in
terms of the expected improvement in survival rate, is achieved when the clinician dosing policy
closely follows the agent’s recommended dosing of fluids and pressors. As expected, dramatic
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deviations from the RL policy are not associated with a positive change in survival rate, and may
even hurt the patients.

The value network, advantage network and policy network presented in the algorithm play crucial
role by predicting the state of the patient and helping to decide the dose to administrate and
advantages of the dose administrated. Sepsis is a condition that progresses over time, and to help
capture this temporal trend we employed recurrent neural networks. We compared the performances
of the RL agent across the Gated recurrent unit network (GRU), Long short-term memory network
(LSTM), and the simple recurrent network (RNN). Note that we trained all networks with a batch
size of 1000 and for different epochs and layers.

Figure 1 shows the result of average improvement obtain by administrating vasopressor and fluid to
sepsis and septic shock patients. The networks were trained on 100, 200, and 300 epochs with 1, 2, 3
and 5 layers. For the GRU network, we have GRU100, GRU200 GRU300, the simple RNN network,
RNN100, RNN200 RNN300, the same LSTM network, LSTM100, LSTM200 LSTM300.

Values (improvement) greater than zero corresponds to reduction in mortality when the RL’s optimal
policy is followed vs clinician policy. When values is equal to zero, that mean the dosing has not
brought any change to the patient and the situation remain the same. However, negative values
show the administration has not ameliorated or improved the patient situation, on the contrary it has
degraded the situation, the agent has made a worse recommendation vs clinician recommendation.

Figure 2: Improvement sepsis treatment using recurrent neural network

We can observe on the figure, for instance by training the agent (value network, advantage network
and policy network) using the Gated recurrent unit network for 300 epoch and 1 layer, the average
improvement is 0.831026 which is a good recommendation, whereas the situation is worst, the agent
starts gave bad recommendations -0.035629 and -0.033629 using the same network for 3 and 5 layers
respectively.

We can observe from figure 2 that by training our agent on 300 epochs and 1 layer, the Gated
recurrent unit network has outperformed the simple recurrent network and the Long short-term
memory network. Distribution obtained by training with the Gated recurrent unit network, the
simple recurrent network and the Long short-term memory network for different epochs and
different layers can be summarized such that figure 3.
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Figure 3: Distributions of improvement using different networks

6 Conclusion and Perspectives

In conclusion, our method (algorithm) presents significant novel contributions, a good step forward
for getting a time series agent able to recommend in time the appropriate amount of fluid and
vasopressor for sepsis management, compared to previous studies done on sepsis and septic shock
treatment. Our agent used time-series recurrent neural network to assign a state to a patient from
clinical information and recommendation in time as described. Positive or good recommendations
have been done by the agent using time-series recurrent neural network, this is significant, it can
improve health situation of patients. However, amelioration needs to be done to overcome it
limitations. At this stage our agent cannot be used in real life for treating sepsis patients accurately.
In this work the policy evaluation has been done using standard counterfactual reasoning, in future
training the agent using a better offline reinforcement learning policy would be better. An agent
able to learn a better policy from observing clinician, rewarded by patient improvement over time
will perform better. We also need to optimize our network parameters for better improvement using
optimization technique (Bayesian optimization).

Regardless of these limitations which will be explored in future work, our reinforcement learning
approach marks an interesting first step towards providing real-time, individualized computer-
assisted treatment of sepsis and septic shock management.
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