AMMI- 2019/2020 list of Courses

These courses where taught together with Labs, Mentoring Sessions, Assignments, Projects and Quizzes for the 10 month course duration of the AMMI 2019/2020 program.

• Bootcamp

- \star Introduction to machine learning
- $\star\,$ Data structures and algorithms
- \star Statistical computing tools
- \star Linear Regression, bias, variance and regularization
- $\star\,$ Decision trees and neural networks
- \star Computer Vision and transfer laerning
- \star Sequence models and natural language processing
- * Cloud machine learning (Azure, Google Cloud, AWS)
- \star Introduction to Pytorch Environment
- \star Advanced Features in Pytorch Environment
- \star Introduction TensorFlow Environment
- \star Advanced Features in Tensorflow Environment

• Mathematics of Machine Learning

- \star Linear algebra
- \star Analytical Geometry
- \star Vector Calculus
- $\star\,$ Matrix Decomposition
- * Statistics and Probability
- \star Linear Regression
- \star Dimensionality Reduction: PCA
- \star Computing Integrals

• Foundations of Machine Learning

- \star Logistic regression and linear classification
- \star Debugging, model and parameter search
- * Data visualization (PCA, t-SNE)
- \star Convnets, vision
- \star Natural Language Processing
- \star Reinforcement Learning

• Bayesian Inference in ML

- \star Bayesian Linear Regression
- ★ Empirical Risk Minimization
- \star Bayesian Logistic Regression and Neural Networks
- \star Gaussian Processes
- \star Regression Inference, Model selection

• Deep Learning

- \star Introduction to Deep learning
- \star Deep Learning Fundamentals
- \star Multilayer Perceptron and Backpropagation algorithm
- \star Learning Arbitrary Networks of Operators and Autograd
- \star Supervised Learning: Convolutional Neural Networks
- \star Unsupervised Learning: Autoencoders
- \star Initialization and Optimization

- \star Implicit and Explicit Regularization in Deep Learning
- * Debugging Deep Learning models, Going Deeper
- \star Variational Autoencoders

• Natural Language Understanding

- \star Introduction to NLP
- \star Representation Learning in NLP
- $\star\,$ Word, Sentence Representation
- $\star\,$ Unsupervised Learning in NLP
- $\star\,$ Structured Prediction in NLP
- $\star\,$ Sequence-to-sequence models

• Natural Language Processing

- \star Language modelling
- \star FF-LM RNN-LM OpenAI GPT-2
- $\star\,$ Conditional Machine Translation
- \star Attention Mechanism
- \star Transformers for Machine Translation
- \star Generation Algorithms
- $\star\,$ Masked ML and latent-variable MT
- \star Decoding algorithms

• Deep Natural Language Processing

- $\star\,$ Machine Reading with Deep Learning
- $\star\,$ ElMo, BERT
- \star Open-domain Question Answering
- \star Dialogue Learning
- \star Chatbots

• Machine Learning with Kernel Methods

- \star Positive definite kernel, RKHS, Aronszajn's theorem
- $\star\,$ Kernel trick, Representer theorem, kernel ridge regression
- \star Supervised classification, Kernel logistic regression, large margin classifiers, SVM
- \star Unsupervised analysis, kernel PCA, kernel CCA, kernel K-means

• Probabilistic Graphical Models

- \star Introduction and Maximum Likelihood Estimation
- \star Expectation Maximization and Gaussian Mixtures
- $\star\,$ Graph Theory, Directed and Undirected Graphical Models
- \star Exponential Families and Information Theory
- \star Approximate Inference I: sampling and MCMC
- \star Model Selection

• Reinforcement Learning

- \star Introduction to RL
- $\star\,$ Markov Decision Processes
- \star Exploration and Exploitation
- * Planning by Dynamic Programming
- \star Model-Free Prediction
- \star Model-Free Control
- \star Value Function Approximation

- \star Policy Gradient Methods
- * Integrating Learning and Planning
- \star Case Study: RL in classic Games

• Optimization for Machine Learning

- \star Introduction to Optimization
- \star Quadratic programming
- \star Duality optimization (Lagrange dual)

• Computer Vision I

- \star Introduction: Computer Vision Overview
- \star Image Classification
- \star Loss function and Optimization
- \star Convolutional Neural Networks: Architectures and Components
- \star CNNs Training and Debugging
- \star Visualizing and Understanding CNNs
- \star Detection and Segmentation
- \star Generative Models in Computer Vision
- \star Video Understanding

• Computer Vision II

- \star Visual Recognition
- \star Object Detection and Semantic Segmentation
- \star Instance Segmentation and Pose Prediction
- * Video architectures (ConvNets, LSTM, 3D convnets, Two-stream)
- * Video Understanding: Action classification, Localization, Tracking
- AI + Computational Biology
 - \star Introduction to the Area of AI Computational Biology
 - \star Principal resources in Computational Biology
 - \star Decoding Genomic sequences
 - \star AI Application to Cancer
 - $\star\,$ AI Application to Agriculture and Farming
 - $\star\,$ AI in viruses, pathogen and Covid

• Matrix and Tensor Factorization for Machine Learning

- \star Introduction to tensor decomposition techniques (CP, Tucker, Tensor Train decomposition).
- \star Introduction to tensor networks.
- * Optimization techniques for tensor problems (gradient descent, alternating minimization)
- \star Efficient Computations with Tensor Networks
- \star Image Completion, Collaborative filtering
- $\star\,$ Compressing Neural Networks, Learning Latent variables
- Final Project
 - \star Final Project with Supervision.